

	Analog Protection	FET Drivers	
This is an AND gate which takes the enable signal FET drivers with their input waveforms. In this mplementation the AND gate only works to events. If synchronous rectification were used would need to be populated in order to enable dead time. This circuit inverts the signal from OVOUT in order to provide an active high enable signal to gate at the top of this section. An IC logic inverter was not used because the input from OVOUT would exceed the maximum rating of the gate input. Using a discrete BJT allows for the $\$ 0.02$ device. When the base exceeds its reshold voltage, the BJT conducts collector emitter and brings the voltag to disable the power stage.			 keeps switching noise from the chip but is mostly there to serve as an indicator that driver has failed when the board is viewed Non-rigerous testing has shown that the resistors are 0 Ohm as opposed to 10 Ohm. So long as a fast driver is used (minimum rise time) efficiencry is not greatly effected by drive resistance.
	Programing Headder	Microcontroller	
	 CAN Address Selector		PWM dive waveforms each 180 degrees out of phase with each other which are used to signal the boost MOSFETs. The MCU also produces the synchronous rectifier FETs. Resistors create dead time between the boost and sync drive signals which prevents shoot-though in the power stage. Since synchronous rectification is not used here, none of the capacitors are populated and only the boost drive resistors are populated. LEDs 1-3 are for displaying the status of the MPPT. Their functionality is configured in The MCU makes analog measurements of the input and output as temperature. The MCU communicates with a one wire serial using drive circuitry shown on the next pag The MCU also communicates telemetry over also shown on the next page

