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ABSTRACT
Ionization detectors, as used in smoke alarms, output a very low current that requires a buffer amplifier to
interface to the alarm circuitry. This requires a buffer amplifier with low input bias current, and, since a
smoke detector is a "always-on" device, the amplifier must also have a very low quiescent current to
maximize the battery life. This application note demonstrates the use of the LPV801 nanopower
operational amplifier as the buffer amplifier in a common ionization chamber application.
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1 Introduction
Ionization smoke detectors were developed in the early 1950s, and with advancements in semiconductor
technology, have been mass produced since the late 1960s.

Openly flaming combustion generates smaller smoke particles than non-flaming (smouldering)
combustion. Ionization detectors respond much faster to the smaller smoke particles of flaming fires than
photoelectric detectors. Photoelectric detectors respond faster to smouldering fires that generate larger
smoke particles. It has been recommended that both ionization and photoelectric detectors be used for
maximum response time.

Ionization detectors output a very low current that requires a very high input impedance buffer amplifier to
interface to the alarm circuitry. This requires a buffer amplifier with very low input bias current, and, since
a smoke detector is an "always-on" device, the amplifier must also have a very low quiescent current to
maximize the battery life.

With a bias current typically less than 1pA at room temperatures, and a quiescent current typically less
than 500nA, the LPV801 nanopower operational amplifier is ideal for this buffer amplifier application.

This Application Note will show the performance of the LPV801 when paired with a ionization chamber
utilized by a major smoke alarm manufacturer. Other chambers will have similar functionality but may have
different results.

2 Ionization Chamber Operational Theory
Figure 1 shows an example of a typical ionization chamber and a the buffer amplifer circuitry.

Figure 1. Typical Ionization Chamber

The chamber consists of three main parts; an open air chamber, a collector plate, and a low level ionizing
radiation source.

The radiation source consists of less than 1 Microcurie of Americium 241 foil mounted in a "pellet"
container. The Americium mainly emits low energy alpha particles, which are absorbed by a few
centimeters of air or the plastic enclosure and pose little risk when handled properly. The Americium pellet
is placed on the grounded (negative) pedestal.

The alpha particles collide with the air molecules and split them into positive and negative ions. Opposites
attract, so the negative ions are attracted to positively charged chamber housing, and positive ions
attracted to negative source. This flow creates a continuous current flow between plates.

When a fire starts, smoke particles enter the chamber and disturbs the current flow, causing a decrease in
the current flow.
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Humidity can also cause a change in the current, so to minimize this effect; the chamber is divided into
two chambers by a perforated collector plate. One chamber is exposed to the open air, and one chamber
is protected from direct airflow (but still exposed to ambient air and humidity). The collector plate now
measures the difference between the two chambers.

To help accelerate the charges, which increases the effective sensitivity, the positive chamber cover is
maintained at a higher voltage relative to the negative source.

Smoke causes imbalance between "open" and "sealed" chamber currents, and the collector plate detects
this difference in chamber charges. Depending on the ratio of the chamber volumes, clean air output
voltage on collector plate is between 1/2 to 5/8 the chamber voltage. The collector plate is connected to
the LPV801 high impedance buffer amplifier which drives the alarm circuitry.

2.1 Typical Application Circuit
Figure 2 shows a typical application circuit.

Figure 2. Simplified Schematic Diagram

The buffer input is connected directly chamber collector plate. This is a critical high-impedance (sub pA)
node and requires careful layout and low leakage layout techniques.

To minimize leakage, a "Guard" trace is placed surrounding the input trace. The guard trace is driven by
the buffer output to maintain the guard at nearly the same potential as the input trace. By maintaining the
guard at the same potential as the input trace, any leakages between the guard and the input trace are
reduced to near zero.

VOUT is then applied to a simple threshold comparator, or, into a ADC input on the alarm controller.

In order not to disturb the charges on the plate and avoid lengthy settling times, the amplifier must be
powered continuously.

2.1.1 Test Function
The UL specification requires that the alarm provide a self-test function. In most detectors, this is
accomplished by a "Test" button that allows the user to test the alarm.

To perform the self-test, the chamber voltage is reduced, which should then cause a corresponding drop
in the collector voltage. Simple detector circuits would interpret the corresponding voltage drop as a fire
event and sound the alarm.

To accomplish the drop in chamber voltage, the chamber voltage is supplied through a resistor (R1). Due
to the sub pA chamber currents, there is almost no voltage drop across the resistor (<1uV) during normal
operation.

A second resistor (R2) is connected between the chamber and the test switch. When the switch is
pressed, a voltage divider is created by the R1 and R2 resistors and the chamber voltage decreases by
the resistor ratio. A ratio of one half is common.
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The "test" button can be a simple contact switch, as shown above, or can be initiated by the controller
using an open collector transistor or MOSFET in place of the switch. Controller based detectors can
perform the self-check at regular intervals without sounding the alarm.

The results of an actual chamber test is shown in Figure 5.

2.2 Chamber Measurement
To provide an initial performance point, the detector collector voltage was measured with a Keithley 617
Electrometer (A voltmeter with >200 TΩ input impedance). The chamber voltage was set to 5.2 V. The
collector measured 2.12 V in clean air.

When the input to an op-amp is unconnected, the input potential will naturally float to the point of zero bias
current (or to where all the leakages cancel). Ideally this should be somewhere within the operating range
and not drifting down all the way to the rails. This test will verify the amplifier is not loading down the
chamber with excessive leakage.

To test for this, the bare input (with sensor disconnected) was briefly touched to GND, 0.5V or 2V
potentials then left floating to see where the input voltage would settle. Figure 3 shows the results of these
tests. All three showed that the input would eventually float to about +950 mV. Electrometer tests
confirmed that the "zero" bias current was also around 950 mV, and also corresponds to the input bias
current graphs on the LPV801 datasheet. The bias current at 2 V was about 120 fA, which also correlates
to the LPV801 datasheet curve.

Figure 3. Chamber Measurement

The chamber output was measured. The collector was briefly shorted to ground to make sure there were
no stored charges, and that the resulting charge was due to the ionization charges. The voltage quickly
rose to around 2.12V, as shown in Figure 3. This shows a strong output from the sensor. The 2.12V also
agrees with the electrometer reading, so the amplifier is not loading down the sensor.

It should be noted that the "noise" on the sensor output is expected. This is due to the random charge
peaks of the Americium and not due to amplifier or environmental noise. The buffer does not contain any
filtering, so the "noise" is passed un-attenuated, and the charge peaks can be seen. A post filter would be
required to integrate the output to reveal long-term trends before applying to the alarm threshold
comparator.
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2.2.1 Smoke Measurement
Figure 4 below shows the collector output when a lit match stick was dropped into a loosely sealed
container (soup can) containing the sensor. The match was dropped at the 60 second time point.

Figure 4. Smoke Exposure Results

The detector output responded almost immediately, dropping to a low of 460mV, and then then rising as
the smoke dissipated. Some step changes can be seen, most likely the result of the smoke settling at
different levels due to the thermals in the container, then slowly dissipating. The lid was opened at 1300
seconds (very little change).

2.2.2 Zero Check Measurement
Figure 5 below shows the sensor behavior during the self check test.

Figure 5. Clean-Air Self Check Results

The chamber voltage dropped from 5.23V to 2.66V during the self check period. The collector output
immediately followed and dropped from 2.1V to 0.846V, and returned to 2.1V after about 5 seconds. The
slight over and undershoot is most likely attributable to stray capacitance causing charge injection due to
the relatively fast edge rate of the chamber voltage.

The output clearly showed a reaction and would easily pass the self-check test.
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3 Temperature Range
UL 217 specifies a detector ambient operating range of 0°C to 49°C. While the temperature does not have
a significant effect on the ionization chamber operation, it will have an effect on the bias current of the
amplifier. Most CMOS amplifier inputs will have a doubling of the input bias current for every 10°C
increase in junction temperature. For the LPV801, the bias current is typically around 950fA at 50°C.

Figure 6 shows the collector output voltage over ambient temperature. The effects of the exponential bias
current over temperature are clearly visible.

The results show a 200mV change from 25°C to the UL specified 49°C maximum.

Figure 6. Collector Voltage vs. Temperature

It should also be noted that the UL specification also has a storage and accelerated aging test
temperature requirement of up to +70°C. While non-operating, this may have an effect on materials used
inside the detector. To reduce the effects of humidity, it is common to coat the board in paraffin "beeswax"
or similar material. This material can melt and become liquid at these extended temperatures. The
customer is cautioned about this possibility and precautions should be taken to prevent the wax from
flowing into areas where it can do harm.

4 Conclusion
The UL217 rev 8 specification mandates that from 2019 onwards, smoke detectors should be able to
detect both fast flaming and smoldering fires. New smoke detectors have both ionization and photoelectric
sensing to detect both these types of fires.

This application note shows the typical application circuit for ionization smoke detectors. LPV801,
industry’s first nanopower precision amplifier, with low bias current and ultra-low quiescent current
consumption is ideally suited for this application.
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